

Leveraging Open Source Software and Parallel Computing for

Model Predictive Control Simulation of Urban Drainage Systems
using EPA-SWMM5 and Python

Jeffrey M. Sadler1, Jonathan L. Goodall1,2, Madhur Behl2,3, and Mohamed M. Morsy1,4
1University of Virginia, Civil and Environmental Engineering, Charlottesville, Virginia, USA

2University of Virginia, Computer Science, Charlottesville, Virginia, USA
3University of Virginia, Systems and Information Engineering, Charlottesville, Virginia, USA

4Cairo University, Irrigation and Hydraulics Department, Giza, Egypt

Abstract: The active control of stormwater systems is a potential solution to increased street
flooding in low-lying, low-relief coastal cities due to climate change and accompanying sea
level rise. Model predictive control (MPC) has been shown to be a successful control strategy
generally and as well as for managing urban drainage specifically. This research describes
and demonstrates the implementation of MPC for urban drainage systems using open
source software (Python and The United States Environmental Protection Agency (EPA)
Storm Water Management Model (SWMM5). The system was demonstrated using a
simplified use case in which an actively-controlled outlet of a detention pond is simulated.
The control of the pond’s outlet influences the flood risk of a downstream node. For each
step in the SWMM5 model, a series of policies for controlling the outlet are evaluated. The
best policy is then selected using an evolutionary algorithm. The policies are evaluated
against an objective function that penalizes primarily flooding and secondarily deviation of
the detention pond level from a target level. Freely available Python libraries provide the key
functionality for the MPC workflow: step-by-step running of the SWMM5 simulation,
evolutionary algorithm implementation, and leveraging parallel computing. For perspective,
the MPC results were compared to results from a rule-based approach and a scenario with
no active control. The MPC approach produced a control policy that largely eliminated
flooding (unlike the scenario with no active control) and maintained the detention pond’s
water level closer to a target level (unlike the rule-based approach).

Keywords: Active stormwater control; Model predictive control; Flood prevention; Low-relief coastal cities

1. INTRODUCTION
Stress on stormwater systems will likely increase as warmer global temperatures are
predicted to cause more intense storm events on average (Berggren et al., 2012). At the
same time, the effectiveness of coastal cities' stormwater systems will likely decrease due to
sea level rise which reduces the already limited elevation head needed to drain stormwater
from streets to receiving bodies. Since significant changes to existing stormwater
infrastructure in coastal cities is often cost prohibitive, other options are needed to increase
its effectiveness. An option for increasing the effectiveness of stormwater infrastructure is to
actively manage the existing stormwater infrastructure, making it a “smart” system (Kerkez et
al., 2016). This approach does not increase the actual capacity of stormwater infrastructure,
but rather more efficiently uses the existing infrastructure, increasing its effective capacity.
An example of active management of stormwater infrastructure would be the use of an
automated valve at the outlet of a detention basin which can be opened or closed based on
conditions and forecasts.

 The effective control the actuators in a stormwater system can have a large impact on

the system’s ability to achieve its objective (e.g., minimize flooding). One approach to
determining the optimum control policy for a system (i.e., which actuators should change,
when to change them, and to what setting) is model predictive control (MPC). MPC has been
used effectively in urban drainage scenarios by Gelormino and Ricker (1994). The non-linear
behaviour of the urban drainage system, especially in coastal environments where backwater
effects have to be considered, makes optimization difficult. These authors therefore
converted the system into a linear approximation greatly simplifying the selection of the
optimum control policy.
 Another implementation of MPC was done by Heusch and Ostrowski (2011). Their

approach used the United States Environmental Protection Agency’s (EPA) Storm water
Management Model version 5 (SWMM5) a public domain and widely used distributed
dynamic rainfall-runoff model. Heusch and Ostrowski used SWMM5 to simulate the non-
linear dynamics of their urban drainage system as an “opaque” model meaning that the
control policies were evaluated by the model without considering the mathematical form of
the governing equations. This approach precludes the possibility of guaranteed optimality (a
“practical optimum” can be found using a metaheuristic such as an evolutionary algorithm),
but maintains the non-linear dynamics of the system.
 Although Heusch and Ostrowski (2011) developed software that implements MPC

with SWMM5, there were some drawbacks to their approach including sustainability and
availability of the software which was closed-source and is no longer available. The main
objective of this study was to create an open-source implementation of MPC for SWMM5. An
additional objective was to leverage parallel computing since a computationally-expensive
metaheuristic is needed. To accomplish these objectives, the open-source Python
programming language was used in conjunction with SWMM5. To evaluate the MPC
implementation, it was applied to a simplified use case. The MPC results were compared to
the results from two other scenarios applied to the same use case: a rules-based approach
and a scenario with no active control. The remainder of this abstract describes the methods
used to implement the open-source MPC and the results of the evaluation. Finally a brief
conclusion is given.

2. Methods

2.1 MPC overview
MPC consists of the following components: 1)
information from the system, 2) a process model
which accepts input from the system and is used
to simulate the effect of a given control policy,
and 3) an optimization routine to determine the
optimum control policy. In MPC the optimization
routine is performed at each control time step.
For this routine: 1) system states are read from
the system, 2) a series of control policies is
evaluated, 3) the best control policy is selected,
and 4) the best control policy is implemented.
Although the best control policy is obtained for the
entire control horizon, only the first step in the control policy is used since the procedure
occurs at every control time step.

Figure 1. MPC workflow

2.2 MPC Implementation for SWMM5 using Python
The design of our MPC implementation for SWMM5 using the Python programming language
used three main Python libraries: pyswmm (https://github.com/OpenWaterAnalytics/
pyswmm), Distributed Evolutionary Algorithms for Python (DEAP) (https://github.com/DEAP/
deap), and Scalable COncurrent Operations in Python (SCOOP) (https://github.com/soravux/
scoop). The pyswmm library provides a Python interface to the SWMM5 model which is
written in the C programming language. Through pyswmm, a SWMM5 model can be run
step-by-step. This is a critical functionality for MPC since the best control policy needs to be
found at each control time step. The DEAP library is used to select the best control policy
using an evolutionary algorithm. The SCOOP library provides functionality for parallelizing
the evolutionary algorithm execution.
 The Python MPC workflow is shown in Figure 1. For each control time step, the

system states are read from "reality". In our case we are simulating "reality" with a SWMM5
model, termed "reality model" in the figure. The system states that are read from the "reality
model" are the heads at each node in the system and the flows at each link. Next these
states are written to another SWMM5 model
the "process model" in the figure. The DEAP
library uses an evolutionary algorithm to
select the practically optimum policy. To do
this, many simulation runs of the process
model are executed (one for each control
policy) which is computationally expensive.
Since the model runs are independent, this
process can be parallelized using the
functionality provided by the SCOOP library. The best policy selected by the evolutionary
algorithm is returned to the "reality model" and implemented. The next time step is then
executed and the process repeats.
2.3 MPC Evaluation
A simplified use case motivated by an actual flood-prone area in
Norfolk, Virginia USA was used to evaluate our MPC implementation. A
simple schematic of this is shown in Figure 2. In the use case a
detention pond (St1) is upstream from a node (J3) at which we would
like to minimize flooding. The active control of the outlet of the pond is
simulated using an "orifice" structure in SWMM5 which can have a
setting between 0 (completely closed) and 1 (completely open).
Therefore the control policies for the use case were an array of settings
between 0 and 1, one setting for each control time step in the control
horizon. To reduce the number of possible control settings to be
evaluated by the computationally expensive evolutionary algorithm, the
settings were constrained to be even tenths (e.g., 0.1, 0.2). The simulated rainfall event was
an arbitrary synthetic event shown in Table 1. A control horizon of 6 hours was used with a
control time step of 15 minutes. For the evolutionary algorithm, 8 generations were evaluated
and the initial generation population was 80 individual policies.
 In the use case, the control policies were evaluated using SWMM5 based on the
following objective function

𝐶𝑜𝑠𝑡 = 	𝛼𝐹)*	 + 𝛽𝐹-)	 + ϕ𝐷)*	 (1)

Time Rainfall
depth [mm]

04:00 6.35
05:00 12.7
06:00 10.16
07:00 6.35
08:00 3.175

Table 1. Rainfall data
for evaluation use case

Figure 2. Schematic of simplified use case model

Where 𝐹)* is the total volume of flooding from the storage node in millions of gallons (1 gallon
= 3.785 liter), 𝐹-)	is the total volume from the downstream node J3 in millions of gallons, and
𝐷)* is the average deviation from a target level for the detention pond in feet (1 foot in this
case) (1 foot = 0.3048 meter). The 𝛼, 𝛽 and 𝜙 values are weight coefficients. In our case these
values were 100, 100, and 0.05, respectively. These values were chosen to give more weight
to flooding than to deviation from the target level at
the storage unit.

3. Results
The MPC implementation was successful at running
as described above including the use of multiple
processing cores through the SCOOP library. The
control policy resulting from the MPC in the
evaluation use case significantly reduced flooding at
the downstream node compared to the passive
control (0.01 million gallons of flooding compared to
0.05 million gallons, respectively). Additionally, the
MPC policy was able maintain the depth at the
storage node closer to the target value, something
the rules-based approach was not able to do (see
Figure 3).

4. Conclusions
The objective of this research was to develop, implement, and evaluate an open-source
solution for model predictive control (MPC) for the United States Environmental Protection
Agency’s (EPA) Stormwater Management Model (SWMM). The implementation was
accomplished using the Python programming language and key Python libraries for step-by-
step running of the model, use of evolutionary algorithms, and parallel computing. The
system worked as designed and the resulting control policy significantly reduced flooding
compared to a situation with no control in a simple, simulation use case. The MPC
implementation described here can be used to perform MPC for any control in a SWMM5
model and could be useful for understanding the potential utility of smarter stormwater
systems. The code is accessible at https://github.com/uva-hydroinformatics/swmm_mpc.
Future improvements may include adjusting weights in the objective function and taking
advantage of SWMM5’s hotstart file capabilities to ensure consistency between the reality
model and the process model.

References
Berggren, K., Olofsson, M., Viklander, M., Svensson, G., Gustafsson, A.-M., 2012. Hydraulic Impacts on Urban

Drainage Systems due to Changes in Rainfall Caused by Climatic Change. J. Hydrol. Eng. 17, 92–98.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000406

Gelormino, M.S., Ricker, N.L., 1994. Model-predictive control of a combined sewer system. Int. J. Control 59, 793–
816. https://doi.org/10.1080/00207179408923105

Heusch, S., Ostrowski, M., 2011. Model Predictive Control with SWMM. J. Water Manag. Model.
https://doi.org/10.14796/JWMM.R241-14

Kerkez, B., Gruden, C., Lewis, M., Montestruque, L., Quigley, M., Wong, B., Bedig, A., Kertesz, R., Braun, T.,
Cadwalader, O., Poresky, A., Pak, C., 2016. Smarter Stormwater Systems. Environ. Sci. Technol. 50, 7267–
7273. https://doi.org/10.1021/acs.est.5b05870

Figure 3. Depth of water in detention pond
for three control scenarios

